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Abstract 

Business data always exhibits certain degree of asymmetry and some heteroscedasticity which 

affect the models and model choice. This asymmetry can be improved to improve the forecasts 

performance of the model. This work considered cases whereby the errors in the model are 

normally distributed or normally violate assumption, to improve the efficiency in parameter 

estimation and forecast as well. The results show that to determine whether volatility require 

the normal inverse Gaussian distribution, non-normality, and asymmetry which very important 

in modelling financial returns. Common model selection criteria, the Akaike Information 

Criterion (AIC) and the Swartz-Bayesian Information Criterion (BIC), were used to determine 

which recommended model best fits the price and return series to choose. The results show that 

the best marginal values of the residuals of the GARCH model when estimating Dancem, 

GTCO, Vitafoam, Nestle, and Fidson were normal inverse Gaussian distributions, respectively. 
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1. Introduction: 

Volatility is important to the functioning of financial markets and is considered a barometer of 

uncertainty when investing in financial assets. Policy makers, financial industry regulators, and 

investors are concerned about volatility. A fact about financial volatility is that bad news 

(negative shocks) tends to have a greater impact on volatility than good news (positive shocks). 

Black (1976) attributed this effect to the fact that bad news tends to lower stock prices. This 

increases leverage. Based on this, the asymmetric news effect is commonly referred to as the 

leverage effect. A characteristic of asset returns is the accumulation of volatility, first observed 

by Mandelbrot (1963). Regardless of sign, large changes tend to be followed by large changes, 

and small changes tend to be followed by small changes (Fama, 1970). He also mentions 

periods of high and low volatility, stating that ``big price moves are followed by big price 

moves, but their magnitude is unpredictable.''  According to Deebom and Essi (2017) there are 

two types of volatility models, and they include symmetric models and asymmetric models. 

The main difference between these two classes is that symmetric models, such as ARCH and 
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GARCH, do not capture leverage effects in the time series, unlike asymmetric models 

(Deebom, Mazi, Chims, Richard &, George,2021).  

GARCH models consider volatility clustering and the heteroskedasticity properties of variance 

and covariance, which are some of the characteristics of financial time series. GARCH models 

allow conditional fluctuations to depend on previous lags.  In another development, The 

GARCH model transforms the AR process from an ARCH model to an ARMA process by 

adding an MA process (Wobo &Deebom, 2022). The standard GARCH model assumes that 

positive and negative error terms have symmetrical effects on volatility. In other words, both 

good and bad news have the same impact on the volatility model. This assumption is often 

violated in stock returns, as volatility increases more after bad news than after good news. To 

avoid marginal model misspecification, we consider all possible types of GARCH models, 

including asymmetric GARCH specifications such as standard GARCH(s-GARCH) and 

exponential GARCH (EGARCH). We also consider the leverage effects that exist in the series. 

Conditional densities used for error distributions such as integrated model GARCH 

(IGARCH), asymmetric power ARCH (apARCH), and Grosten-Jagannathan-Rankl GARCH 

(GJR-GARCH). Normal, (Normal) Student-t (std), Skew-student (ghst), skew-normal (snorm)( 

Deebom, et al, 2021). The motivation for this paper arises, first, from the fact that all his 

GARCH models are originally based on the assumption that financial time series follow a 

normal distribution (Gaussian distribution). However, significant evidence suggests that 

financial time series are rarely Gaussian but are usually leptokurtic and exhibit distinctive 

behavior. Theoretically, the GARCH model can accommodate fat-tailed distributions through 

its specification. However, GARCH models should use fat-tailed distributions, such as 

Student's t distribution, or other distributions that can produce more efficient results. Second, 

fat-tailed GARCH models are particularly important for accurately predicting financial 

volatility, which is important for portfolio risk management, such as value-at-risk and/or 

conditional tail risk - expected value measurements. The main drawback is that some 

distributions, even the widely used Student t distribution, lack aggregation stability. If you don't 

know the true distribution, you need to know which fat-tailed distribution to use for your 

GARCH model. This is important for portfolio applications and risk management and may 

further benefit portfolio management and other enterprise risk management issues, where 

accurate risk measurement is a major concern. 

3. Methodology  

Symmetric GARCH Models 

 The GARCH model is an extension of the ARCH model that was developed by Engle and 

Bollerslev (1986) which was applied to overcome the heterogeneity arising from high data 

volatility. The conditional variance is represented as a linear function of a long term mean of 

the variance, its own lags, and the previous realized variance. The simplest model specification 

is the GARCH (1,1) model:  

Mean equation            𝑟𝑡 = 𝜇 + 휀𝑡 
 Variance equation       𝜎𝑡

2 = 𝜔 + 𝛼1휀𝑡−1
2 + 𝛽1𝜎𝑡−1

2  

Where 𝜔 > 0, 𝛼1 > 0 and 

𝑟𝑡 = return of the asset at time t 

𝜇 = average return 

휀𝑡 = residual returns, defined as  

휀𝑡 = 𝜎𝑡𝑧𝑡 
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Where 𝑧𝑡 are standardized returns (i.e. realization of an iid random variable with zero mean 

and variance 1), and 𝜎𝑡
2 stands for the conditional variance. For GARCH (1,1), the constraints 

𝛼1 ≥ 0 and 𝛽1 ≥ 0 are needed to ensure that 𝜎𝑡
2 is strictly positive (Poon,2005). The 

conditional variance equation models the time  varying nature of volatility of the residuals 

generated from the mean equation.  The definition of the GARCH model starts from the log-

return series,𝑟𝑡 of an asset price 𝑃𝑡 at time 𝑡 given as, 

                   𝑟𝑡 = log(𝑃𝑡) − log (𝑃𝑡−1) 
    where 𝑃𝑡−1 is the price at the previous time, 𝑡 − 1 

Let the conditional mean of 𝑟𝑡 given 𝐶𝑡−1 be                       𝐸(𝑟𝑡|𝐶𝑡−1) = 𝜇𝑡  
and conditional variance of 𝑟𝑡 given 𝐶𝑡−1 be     𝑉𝑎𝑟(𝑟𝑡|𝐶𝑡−1) = 𝐸[(𝑟𝑡 − 𝜇𝑡)

2|𝐶𝑡−1] = 𝜎𝑡
2, 

where 𝐶𝑡−1  is the information set available at the time  𝑡 − 1.  The time series 𝑟𝑡 is represented 

as the sum of a predictable and unpredictable part as  

                          𝑟𝑡 = 𝐸(𝑟𝑡|𝐶𝑡−1) + 휀𝑡 
휀𝑡 is conditionally heteroscedastic once 휀𝑡 = 𝑧𝑡𝜎𝑡, 𝑧𝑡 follows a particular distribution, either 

Gaussian, Student t, and Generalized Error distributions or skewed version of these 

distributions and 𝜎𝑡 is the square root of the conditional volatility series.  Therefore, Engle 

(1982) proposed modelling the residuals 휀𝑡 with the ARCH(q) model 

𝜎𝑡
2 = 𝜔 +∑𝛼𝑖휀𝑡−1

2 =

𝑝

𝑖=1

𝜔 + 𝛼(𝐿)휀𝑡
2 

where the parameters 𝜔 > 𝑜, 𝛼𝑖 ≥ 0   for 𝑖 = 1,… , 𝑝 

𝛼(𝐿) = 𝛼𝐿 =∑𝛼𝑖𝐿
𝑖

𝑃

𝑖=1

 

is the polynomial of order p defined for the ARCH parameter and 𝛼1 + 𝛽1 < 1 to ensure 

covariance stationary conditional variance. 

Bollerslev(1986) generalized Engle’s model by including lags of unconditional variance in the 

model given as 

𝜎𝑡
2 =   𝜔 +∑𝛼𝑖휀𝑡−1

2

𝑝

𝑖=1

+∑𝛽𝑖𝜎𝑡−𝑗
2

𝑞

𝑗=1

 

                                          =    𝜔 + 𝛼(𝐿)휀𝑡
2 + 𝛽(𝐿)𝜎𝑡

2                                        (1) 

 where 𝛽𝑖 ≥ 0   for 

𝑗 = 1,… , 𝑞, 𝛽(𝐿) = 𝛽𝐿 =∑𝛽𝑗𝐿
𝑗

𝑞

𝑗=1

 

is the polynomial of order 𝑞 defined for the GARCH parameters remain as defined above. 

Equation ( 11) can be represented as an autoregressive moving average ( ARMA(𝑝, 𝑞)) process 

as, 

 

휀𝑡
2 = 𝜔 +∑𝛼𝑖휀𝑡−𝑖

2

𝑝

𝑖=1

+ 𝑉𝑡 −∑𝛽𝑗𝑉𝑡−𝑗

𝑞

𝑗=1

+ (∑𝛽𝑖𝜎𝑡−𝑗
2

𝑞

𝑗=1

) 

                                                                                                                                    (2)       

 where in compact form as, 

𝛷(𝐿)(1 − 𝐿)휀𝑡
2 = 𝜔 + (1 − 𝛼(𝐿))𝑉𝑡 

or, 
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                 𝜎𝑡
2 = 𝜔 + (1 − 𝛽(𝐿) − 𝛷(𝐿)(1 − 𝐿)휀𝑡

2 + 𝛽(𝐿)𝜎𝑡
2                                 (3) 

where 

𝛷(𝐿) = 1 −∑∅𝑖

𝑝

𝑖=1

𝐿𝑖 

 

and 𝐿 is the backward shift operator. From the model, there is second-order stationarity if the 

roots 𝛼(𝐿) + 𝛽(𝐿) = 1  lie outside the unit circle. Since the estimate 𝛼(𝐿) + 𝛽(𝐿) is always 

very close to unity, this motivated the development of the integrated GARCH (IGARCH(p,q)) 

model of Engle and Bollerslev (1986) which is  

  𝜎𝑡
2 = 𝜔 + 𝛼(𝐿)휀𝑡

2 + 𝛽(𝐿)𝜎𝑡
2  

 

This specification is often interpreted in a financial context, where an agent or trader predicts 

this period’s variance by forming a weighted average of a long-term average (the constant), the 

forecast variance from last period (the GARCH term), and information about volatility 

observed in the previous period (the ARCH term). If the asset return was unexpectedly large 

in either the upward or the downward direction, then the trader will increase the estimate of the 

variance for the next period, while the GARCH-term generates persistence of volatility. 

The basics GARCH(1,1) model can be written as an ARMA(1,1) model in terms of squared 

residuals.  

The symmetric GARCH(p,q) model: 

𝜎𝑡
2 =   𝜔 +∑𝛼𝑖휀𝑡−1

2

𝑝

𝑖=1

+∑𝛽𝑖𝜎𝑡−𝑗
2

𝑞

𝑗=1

 

                                                          for 

{
 
 

 
 
𝑗 = 1,2, … , 𝑞;
𝑖 = 1,2, … , 𝑝;
𝜔𝑗 > 0;

𝛽𝑗 ≥ 0;

𝛽𝑗 < 1;

𝛼 > 0

 

Asymmetric GARCH Models 

An interesting feature of asset prices is that bad news appears to have a stronger impact on 

volatility than good news. For many stocks, there is a strong negative correlation between 

current returns and future volatility. The tendency for volatility to decrease as returns increase 

and for volatility to increase as returns decrease is often referred to as the leverage effect 

(Enders, 2004). The main drawback of the symmetric GARCH model is that the conditional 

variance cannot respond asymmetrically to increases or decreases in aversion. Such effects are 

thought to be important for the behavior of stock returns. In a linear GARCH (p,q) model, the 

conditional variance is a function of the previous conditional variance and the squared 

innovation. Therefore, the sign of returns cannot affect volatility (Knight and Satchell, 2002). 

Therefore, since the symmetric GARCH model described above cannot explain the leverage 

effect observed on stock returns, several models are introduced to deal with this phenomenon. 

These models are called asymmetric models. EGARCH, TGARCH, and APGARCH capture 

asymmetric phenomena. 
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 The Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH) 

Model 

The first nonlinear asymmetric volatility model is the EGARCH(1,1) model, which captures 

asymmetric responses of the time-varying variance to shocks and, at the same time, ensures 

that the variance is always positive. 

log 𝜎𝑡
2 = 𝜔 + 𝛼1휀𝑡−1

2 |
휀𝑡−1
𝜎𝑡−1

− 𝐸 (
휀𝑡−1
𝜎𝑡−1

)| + 𝛾1 (
휀𝑡−1
𝜎𝑡−1

) + 𝛽1𝑙𝑜𝑔𝜎𝑡−1
2  

 

with the parameters as defined in the GARCH model in (3) except 𝛾1 ≠ 0 to allow for the 

asymmetric effect. It is noted that 𝑙𝑜𝑔𝜎𝑡
2 is linear in 𝑧𝑡 =

휀𝑡
𝜎𝑡⁄  with slope 𝛼1 + 𝛾1 whenever 

𝑧𝑡 is over the range 0 < 𝑧𝑡 < ∞ and 𝑙𝑜𝑔𝜎𝑡
2 is also linear on −∞ < 𝑧𝑡 < 0 with the slope 𝛼1 −

𝛾1. The  𝛼1 gives the magnitude effect while the second term 𝛾𝑘 measures the asymmetric effect 

as in the ARCH model. The asymmetric representations of the models allow for both positivity 

(good news) and negativity (bad news) of the innovations to determine the variance.  

 The initial motivation of Nelson (1991) was to propose a model that could capture the 

asymmetric with the following simple specification: 

 

𝑙𝑜𝑔(𝜎𝑡
2) = 𝜔 + 𝛼1𝐿𝑛(𝜎𝑡−1

2 ) + 𝛽1 {|
휀𝑡−1
𝜎𝑡−1

| − √
2

𝜋
} − 𝛾

휀𝑡−1
𝜎𝑡−1

 

 

Where 𝛾 is the asymmetric response parameter or leverage parameter. The sign of 𝛾 is expected 

to be positive in most empirical cases so that a negative shock increases future volatility or 

uncertainty while a positive shock eases the effect on future uncertainty. 

The Component Generalized Autoregressive Conditional Heteroscedastic (CGARCH) 

Model 

The Component GARCH (CGARCH) model developed by Engle and Lee decomposes the 

conditional variance into a permanent and transitory component. This allows the investigation 

of the long- and short-run movements of volatility affecting securities in finance research. 

The CGARCH(1,1) specification is 

                                                  rt = 𝜇 + 휀𝑡        where 휀𝑡 = Ƞ𝑡√ht 

ht = qt + st 
st = (α + β)st−1 + α(εt−1

2 − ht−1) 
                                                       qt = ω+ ρqt−1+𝜑(휀𝑡−1

2 − ℎ𝑡−1) 
Where 휀𝑡 is the error at time t. Ƞ𝑡 is an identically and independently distributed with zero 

mean and unit standard deviation. ht is the conditional variance of rt at time t which is 

composed of a transitory component stand a permanent component qt. α + β and ρ measure the 

autoregressive persistence of the transitory and permanent components, respectively.α and φ 

stand for the immediate impacts of volatility shocks (휀𝑡−1
2 − ℎ𝑡−1) on the short- and long-run 

components, respectively. It is constrained (α + β) < ρ to distinguish between the two 

components. 

 

 The Threshold Generalized Autoregressive Conditional Heteroscedastic (TGARCH) 

Model 

Another GARCH variant  that is capable to distinguish between positive and negative effects 

or good and bad news effects on volatility or  handle leverage effects is the threshold GARCH 
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(or TGARCH) developed by Zakoian (1994). In the TGARCH (1,1) version of the model, the 

specification of the conditional Variance is 

                    𝜎𝑡
2 = 𝜔 + 𝛼1휀𝑡−1

2 + 𝛾𝑑𝑡−1휀𝑡−1
2 + 𝛽1𝜎𝑡−1

2  

where      𝑑𝑡−1 = 1  if  휀𝑡−1 < 0     bad news 

               𝑑𝑡−1 = 0  if 휀𝑡−1 ≥ 0       good news 

  

Again, the coefficient 𝛾 is known as the asymmetry or leverage parameter. When 𝛾 = 0, the 

model collapses to the standard GARCH forms. Otherwise, when the shock is positive (i.e., 

good news) the effect on volatility is 𝛼1but when the news is negative (i.e., bad news) the effect 

on volatility is  𝛼1 + 𝛾. Hence, if  𝛾 is significant and positive, negative shocks have a larger 

effect on 𝜎𝑡
2 than positive shocks (Carter, 2007). 

𝜎𝑡
2 = 𝜔 +∑𝛼𝑖

𝑞

𝑖=1

휀𝑡−1
2 ∑(𝛽1 + 𝛾𝑑𝑡−1

𝑞

𝑖=1

)𝜎𝑡−1
2  

where 𝜔 is a constant, 𝛼𝑖 is the coefficient of the lagged conditional variance 휀𝑡−1
2 , 𝛽1 is a 

measure of a positive shock (good news),𝛾 is a measure of asymmetric impact or leverage term, 

and negative shock(bad news) impact is measured by 𝛽1 + 𝛾.  
 

The Asymmetry Power Generalized Autoregressive Conditional Heteroscedastic 

(APGARCH) Model 

Ding, Granger and Engle (1993) also introduced the Asymmetry Power GARCH (APGARCH) 

specification to deal with asymmetry. Unlike other GARCH models, in this model, the standard 

deviation is modelled rather than the variance as in most of the GARCH-family. In Power 

GARCH an optional parameter 𝛾  can be added to account for asymmetry (Floros, 2008). The 

model also offers one the opportunity to estimate the power parameter 𝜎 instead of imposing it 

on the model (Ocran and Biekets, 2007). The general asymmetric Power GARCH model 

specifies 𝜎𝑡 as of the following form: 

 

               𝜎𝑡
𝛿 = 𝜔 + 𝛽1𝜎𝑡−1

𝛿 + 𝛼1(|휀𝑡−1| − 𝛾1휀𝑡−1)
𝛿  

 

where 𝛿 > 0 and  −1 < 𝛾1 < 1, 𝛼1 and 𝛽1 are the standard ARCH and GARCH parameters, 

𝛾1is the leverage parameters and 𝛾1 is the leverage for the power term. when 𝛿 = 2, the 

equation becomes a classic GARCH model that allows for leverage effects, and when 𝛿 = 1, 

the condition standard deviation will be estimated. This power parameter 𝛿 is estimated along 

with other parameters in the model. The APARCH model converges to GARCH(1,1) when the 

power parameter is squared (𝑑 = 2) and the asymmetric parameter nullified (𝛾1 = 0). 
Glosten Jagannathan and Runkle(GJR-GARCH(p,q)) model 

To capture the asymmetry property under the sense that shocks not have the exact same impact 

on volatility in between negative and positive shocks, using GJR GARCH model which was 

proposed by Glosten  

𝑟𝑡 = 𝛽0 + 𝛽1𝑟𝑡−1 + 휀𝑡 
                                                             =   𝛽0 + 𝛽1𝑟𝑡−1 + 𝜎𝑡𝑧𝑡 
                                                𝜎𝑡

2 = 𝜔 + 𝛼1휀𝑡−1
2 + 𝜃𝜎𝑡−1

2 + 𝛾휀𝑡−1
2 𝐼𝑡−1 
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                                           for  

{
 
 
 

 
 
 

|𝛽| > 0
|𝛼| > 0
𝜃 > 0
𝛾 > 0

𝛼 + 𝛾 > 0

휀𝑡~𝑁(0, 𝜎
2)

(휀𝑡−1 < 0)

 

where 𝑟𝑡  is a market return at time t,   𝛾, 𝛽0, 𝛽1, 𝜇, 𝛼, 𝜃 are the parameters to be estimated and 

𝐼𝑡−1 = 1 if 휀𝑡−1 < 0 and 𝐼𝑡−1 = 0 if otherwise. Therefore, the model is said to allow good 

news(휀𝑡−1 > 0) and bad news(휀𝑡−1 < 0) to have differential effects on the conditional 

variance. 휀𝑡 = 𝜎𝑡𝑧𝑡 are the residual return and 𝑧𝑡 is standardized residual that must be satisfy 

independently and identically distributed. 

The basics GARCH (1,1) model can be written as an ARMA(1,1) model in terms of squared 

residuals. The symmetric GARCH(p,q) model: 

𝜎𝑡
2 =   𝜔 +∑𝛼𝑖휀𝑡−1

2

𝑝

𝑖=1

+∑𝛽𝑖𝜎𝑡−𝑗
2

𝑞

𝑗=1

 

The GARCH model above can easily be rewritten as  

                   ∅(𝐿)휀𝑡
2 = 𝛼0 + 𝛽(𝐿)𝑢𝑡 

 where 𝑢𝑡 = 휀𝑡
2 − 𝜎𝑡

2 

∅(𝐿) = 1 − ∅1𝐿 − ∅2𝐿
2 −⋯− ∅𝑝𝐿

𝑝 

                                                𝛽(𝐿) = 1 − 𝛽1𝐿 − 𝛽2𝐿
2 −⋯− 𝑏𝑞𝐿

𝑞 

with 𝑝 = max(𝑑, 𝑝) 𝑎𝑛𝑑 ∅𝑖 = 𝛼𝑖 + 𝛽𝑖 

Generalised Autoregressive Conditional Heteroscedasicity (GARCH) methodology is used to 

model heteroscedacity in financial data, where ARMA process models the conditional mean 

and GARCH process describes the conditional variances. Combining the ARMA and GARCH 

model and described in the form of an apARCH( asymmetric power ARCH) model as in           

𝑥𝑡 = 𝜇 +∑𝛼𝑖𝑥𝑡−𝑖

𝑚

𝑖=1

+∑𝛽𝑗

𝑛

𝑗=1

𝜖𝑡−𝑗 + 𝜖𝑡 

                                             𝜖𝑡 = 𝑧𝑡𝜎𝑡 

                                            𝑧𝑡~𝔒𝜗(0,1) 

𝜎𝑡
𝛿 = 𝜔 +∑𝑎𝑖(| ∈𝑡−𝑖 | − 𝛾𝑖𝜖𝑡−𝑖)

𝛿

𝑝

𝑖=1

∑𝑏𝑗𝜎𝑡−𝑗
𝛿

𝑞

𝑗=1

 

where 𝑥𝑡 denotes the actual returns for asset, 𝑧𝑡 is the standardized residuals with zero mean 

and unit variance and the parameter restrictions are 𝜔, 𝑎𝑖, 𝑏𝑗 ≥ 0, with mean 𝜇, autoregressive 

coefficients 𝛼𝑖,moving coefficients𝛽𝑖. 𝔒𝜗(0,1) is the probability density function of the 
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innovations or residuals with zero mean and unit variance. 𝜖𝑡(ordinary residuals of the ARMA 

process) innovations. Alternatively 𝜗 are additional distribution parameters that are used to 

describe the skewness 𝜉 with shape 𝑣 of the parameter, 𝛾𝑖 shows the leverage effect (that is a 

positive 𝛾𝑖means a negative shock has a stronger impact than a positive shock on the price 

volatility),𝑏𝑗 is the GARCH parameter, and 𝛿 is the exponent of conditional variance. 

Distribution of Marginals 

The realisation of the standardised residuals from the GARCH(p,q) model for the variables 

should follows any of the following marginal distributions ,𝑓𝑋(𝑥)  is the probability density 

function(pdf) of the marginals. 

  Generalized t Distribution 

                𝑓𝑋(𝑥)  =𝜔 {2𝜎𝜓
1
𝜔⁄ 𝐵 (

1

𝜔
, 𝜓) [1 +

|𝐾|𝜔

𝜓
]𝜓+(

1

𝜔}
−1

 

 for 𝜎,𝜓,𝜔 ∈ ℝ+, 𝜇, 𝑥𝜖ℝ, 𝑘 =
(𝑥 − 𝜇)

𝜎⁄ ,  and 𝐵(. , . ) is the beta function given by 

        B (𝛼, 𝛽) = ∫ 𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡,
1

0
 for 𝛼, 𝛽 > 𝑜. 

Skew Normal Distribution 

                      𝑓𝑋(𝑥)  = 2∅(𝑧)𝛷(𝛽𝑧); 𝑥, 𝛽, 𝜇 ∈ ℝ, 𝜎ℝ+, 

where 𝑧 = 𝑥 −
𝜇
𝜎⁄ , ∅(∙) is the probability density function (pdf) of the standard normal 

distribution given by 𝑓𝑌(𝑦) = (1
√2𝛱
⁄ )𝑒{−

𝑥2
2⁄ }, 𝑦 ∈ (∞,∞) and 𝛷(∙) is its cumulative 

distribution function(cdf) given by  𝐹𝑌(𝑦) = [erf(𝑥 √2⁄ ) + 1], 𝑦 ∈ (−∞,∞). 

Leverage effect 

Black (1976) first noted that changes in stock returns often display a tendency to be negatively 

correlated with changes in returns volatility, i.e., volatility tends to rise in response to bad news 

and to fall in response to good news. This phenomenon is termed the leverage effect and can 

only be partially interpreted by fixed costs such as financial and operating leverage (see Black, 

1976; Christie, 1982). 

 

Log-returns  

The asset prices are transformed into log return series, 𝑅𝑡given by,  

 

𝑅𝑡 = 𝑙𝑜𝑔𝑒 (1 +
𝑃𝑡 − 𝑃𝑡−1
𝑃𝑡−1

) = 𝑙𝑜𝑔𝑒 (
𝑃𝑡
𝑃𝑡−1

) = 𝑙𝑜𝑔𝑒𝑃𝑡 − 𝑙𝑜𝑔𝑒𝑃𝑡−1 

  

Where 𝑃𝑡 is the current price of asset series of interest and 𝑃𝑡−1 is the previous price of the 

asset. 𝑅𝑡  is the log-returns series. To investigate volatility persistence, we take absolute and 

squared values of the return series as |𝑅𝑡|and 𝑅𝑡
2 respectively. 
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Testing for Heteroscedasticity/ARCH effect 

Financial time series are not immediately suitable for copula modelling because they are 

serially correlated (Patton, 2012). We need first to eliminate autocorrelation and seasonality. 

This can be achieve by testing for seasonality and volatility using AR or SARIMA model for 

seasonality and GARCH model for volatility. Testing for Heteroscedasticity is synonymous to 

testing ARCH effect. Thus, we are to test if the returns 
0t tr c = +  or 

t tr =  have constant 

variance. 

Figure 1. Time Plot of Each Asset 

  

 

Table 1    Descriptive Statistics 

  DANCEM GTCO NESTLE VITAFOAM FIDSON 

N Statistic 552 552 552 552 552 

Range Statistic 243 41.34 1045 23.07 14.69 

Minimum Statistic 117 13.37 570 1.43 0.81 

Maximum Statistic 360 54.71 1615 24.5 15.5 

Sum Statistic 113415.6 15546.14 630541.3 3983.19 2325.79 

Jarque-Bera Statistic 1.061𝒆−𝟎𝟓 8.882e-16 9.101e-09 2.2e-16 2.2e-16 

Mean Statistic 205.463 28.1633 1142.285 7.2159 4.2134 

Std. Error 1.99559 0.29531 11.24293 0.29865 0.11911 

Std. Deviation Statistic 46.88575 6.93822 264.149 7.01667 2.79835 

Variance Statistic 2198.273 48.139 69774.7 49.234 7.831 

Skewness Statistic 0.484 0.814 -0.092 1.384 1.613 

Std. Error 0.104 0.104 0.104 0.104 0.104 

Kurtosis Statistic -0.243 0.627 -1.256 0.216 2.626 

Std. Error 0.208 0.208 0.208 0.208 0.208 

 

Table 2 Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic Df Sig. Statistic df Sig. 

DANCEM .095 552 .000 .966 552 .000 

GTCO .109 552 .000 .952 552 .000 

NESTLE .124 552 .000 .947 552 .000 

VITAFOAM .309 552 .000 .684 552 .000 

DANCEM

Time

tsd

2013.5 2014.5

-0.2
0.0

0.2

GTCO

Time

tsd

2013.5 2014.5

-0.2
0.0

0.2
NESTLE

Time

tsd

2013.5 2014.5

-0.2
0.0

0.2

VITAFOAM

Time

tsd

2013.5 2014.5

-0.3
-0.1

0.1

FIDSON

Time

tsd

2013.5 2014.5

-0.3
-0.1

0.1
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FIDSON .160 552 .000 .835 552 .000 

a. Lilliefors Significance Correction 

 

Table 3 :  Estimated Coefficients of the EGARCH (1,1) model for DANCEM 

 Estimate Std. error t-value P- value 

𝛼1 0.105278 0.086400 1.2185 0.223036 

𝛽1 0.897593 0.064064 14.0109 0.000000 

 𝛾1 0.373038 0.115700 3.2242 0.001263 

Log-lik. 1087.602    

AIC -3.9151    

BIC -3.8446    

Estimated Coefficients of the EGARCH (1,1) model for GTCO 

 Estimate Std. error t-value P- value 

𝛼1 -0.12891 0.057809 -2.22999 0.025748 

𝛽1 0.84581 0.0681129 13.83647 0.000000 

 𝛾1 0.37792 0.097788 3.86470 0.000111 

Log-lik. 915.4166    

AIC -3.2901    

BIC -3.2197    

 

 

Estimated Coefficients of the EGARCH (1,1) model for NESTLE 

 Estimate Std. error t-value P- value 

𝛼1 -0.238320 0.053312 -4.4703 0.000008 

𝛽1 0.999990 0.000003 287725.037 0.000000 

 𝛾1 0.028419 0.005662 5.0189 0.000001 

Log-lik. 1170.909     

AIC -4.2175    

BIC -4.1470    

Estimated Coefficients of the GARCH (1,1) model for VITAFOAM 

 Estimate Std. error t-value P- value 

𝛼1 -0.131912 0.116915 -1.12827 0.259206 

𝛽1 0.487575 0.203137 2.40022 0.016385 

 𝛾1 0.515104 0.150921 3.41307 0.000642 

Log-lik. 887.247    

AIC -3.1878    

BIC -3.1174    
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Estimated Coefficients of the GARCH (1,1) model for FIDSON 

 Estimate Std. error t-value P- value 

𝛼1 -0.218581 0.052171 -4.1897 0.000028 

𝛽1 1.000000 0.000028 36304.9430 0.000000 

 𝛾1 0.131465 0.028682  4.5836 0.000005 

Log-lik. 788.7876    

AIC -2.8304    

BIC -2.7600    

 

Table 3: GARCH  MODELS FOR DANCEM 

 Generalized t-

distribution 

Skew Normal 

distribution 

Skew Student   

t-distribution 

Normal Inverse 

Gaussian 

AIC BIC AIC BIC AIC BIC AIC BIC 

Standard 

GARCH 

-3.8418 -3.7871 -3.5078 -3.4530 -3.8545 -3.7919 -3.9214 -3.8588 

LL=1085.427 

 

LL=973.4008 LL=1069.906 LL=1088.35 

Exponential 

GARCH 

-3.8527 -3.7901 -3.5114 -3.4488 -3.8543 -3.7839 -3.9151 -3.8446 

LL=1069.41 LL=975.3988 LL=1070.857 LL=1087.602 

CGARCH -3.8260 -3.7556 -3.4974 -3.4270 -3.8169 -3.7387 -3.9226 -3.8444 

LL=1063.064 LL=972.5408 LL=1061.558 LL=1090.688 

GJR 

GARCH 

-3.8393 -37767 -3.5112 -3.4486 -3.8509 -3.7805 -4.3191 -4.2487 

LL=1065.727 LL=975.3327 LL=1069.922 LL=1198.909 

Fractional 

Int.GARCH 

-3.8863 -3.8080 -3.5095 -3.4312 -3.477 -3.4173 -3.8939 -3.8078 

LL=1080.67 LL=976.8563 LL=969.8738 LL=1083.775 
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GARCH  MODELS FOR GTCO 

 Generalized  

t-distribution 

Skew Normal 

distribution 

Skew Student  

t-distribution 

Normal Inverse 

Gaussian   

AIC BIC AIC BIC AIC BIC AIC BIC 

Standard GARCH -3.2748 -3.2201 -3.1724 -3.1176 -3.2760 -3.2134 -3.2781 -3.2155 

LL= 909.22  LL= 880.98 LL= 910.5439 LL= 911.1156 

Exponential 

GARCH 

-3.2873 -3.2247 -3.1756 -3.1130 -3.2814 -3.2110 -3.2901 -3.2197 

 LL= 913.6466 LL= 882.8871 LL= 913.0265 LL= 915.4166  

CGARCH -3.2719 -3.2015 -3.1638 -3.0934 -3.2617 -3.1834 -3.2719 -3.1936 

 LL= 910.4096 LL= 880.6398 LL= 908.5936 LL= 909.6231 

GJR -3.2852 -3.2226 -3.1762 -3.1136 -3.2825 -3.2121 -3.2869 -3.2164 

 LL= 913.0845 LL= 883.0455 LL= 913.3362 LL= 914.5302 

Fractional Int. 

GARCH 

-3.2784 -3.2002 -3.1739 -3.0956 -3.2757 -3.1896 -3.2829 -3.1968 

 LL= 913.207 LL= 884.4026 LL=913.4423 LL= 915.4166 

 

GARCH  MODELS FOR VITAFOAM 

 Generalized t-

distribution 

Skew Normal 

distribution 

Skew Student t-

distribution 

Normal Inverse 

 Gaussian 

AIC BIC AIC BIC AIC BIC AIC BIC 

Standard GARCH -3.1464 -3.0916 -2.9689 -2.9142 -3.1446 -3.0820 -3.1787 -3.1161 

LL=873.8203 LL=824.9436 LL=874.3311 LL=883.7294 

Exponential 

GARCH 

-3.1522 -3.0896 -2.9855 -2.9229 -3.1487 -3.0783 -3.1878 -3.1174 

LL=876.4309 LL=830.5179 LL=876.4709 LL=887.247 

CGARCH -3.1295 -3.0591 -2.9679 -2.8975 -3.1259 -3.0477 -3.1601 -3.0818 

LL=871.1902 LL=826.6693 LL=871.1931 LL=880.597 

GJR -3.1609 -3.0983 -2.9087 -2.9181 -3.1577 -3.0873 -3.5783 -3.5079 

LL=878.8405 LL=829.1816 LL=878.9451 LL=994.8202 

Fractional Int. 

GARCH 

-3.1124 -3.1011 -2.9550 -2.8767 -2.7707 -2.6846 -3.1783 -3.0922 

LL=871.0459 LL=824.1008 LL=774.3232 LL=886.6104 
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GARCH  MODELS FOR NESTLE 

 Generalized  

t-distribution 

Skew Normal 

distribution 

Skew Student t-

distribution 

Normal Inverse 

 Gaussian 

AIC BIC AIC BIC AIC BIC AIC BIC 

Standard 

GARCH 

-3.8149 -3.7601 -3.3718 -3.3170 -3.8144 -3.7518 -4.0224 -3.9598 

LL=1057.993 LL = 935.933 LL= 1058.861 LL= 1116.73 

Exponential 

GARCH 

-3.9616 -3.8990 -3.4046 

 

-3.3420 -4.1024 -4.0320 -4.2175 -4.1470 

 LL=1099.408 LL=945.9568 LL= 1139.222 LL=1170.909 

CGARCH -3.3024 -3.3624 -3.3930 -3.3225 -3.8763 -3.7981 -4.1264 -4.0482 

 LL=1104.238 LL=943.7617 LL=1077.927 LL= 1146.831 

GJR -3.8124 -3.7498 -3.3905 -3.3279 -3.8090 -3.7386 -4.0328 -3.9624 

 LL=1058.314 LL=1058.381 LL=1054.381 LL=1120.045 

Fractional 

Int. GARCH 

-3.2293 -3.1511 -3.4013 -3.3231 -3.4013 -3.9616 -4.0122 -3.9212 

 LL=899.6741 LL=947.0664 LL= 946.0575 LL=1134.742 

 

GARCH MODELS FOR FIDSON 

 Generalized  

t-distribution 

Skew Normal 

distribution 

Skew Student t-

distribution 

Normal Inverse 

Gaussian 

AIC BIC AIC BIC AIC BIC AIC BIC 

Standard 

GARCH 

-2.7437 -2.6889 -2.6323 -2.5775 -2.7458 -2.6832 -2.7946 -2.6320 

LL=762.884 LL=732.1975 LL=764.4671 LL=777.926 

Exponential 

GARCH 

-2.7766 -2.7140 -2.6352 -2.5726 -2.7653 -2.6948 -2.8304 -2.7600 

 LL=772.9529 LL=733.9881 LL=770.829 LL=788.7876 

CGARCH -2.7598 -2.6894 -2.6314 -2.5610 -2.7574 -2.6791 -2.8042 -2.7260 

 LL=769.3313 LL=733.9636 LL=769.654 LL=782.5636 

GJR -2.7442 -2.6816 -2.6171 -2.5545 -2.7482 -2.6778 -2.8066 -2.7362 

 LL= 764.0337 LL=729.0075 LL=766.128 LL=782.224 

Fractional 

Int. GARCH 

-2.8133 -2.7401 -2.6542 -2.5759 -2.7608 -2.6747 -2.8829 -2.7968L 

 LL=786.433 LL=741.2306 LL=771.5911 LL=805.2255 
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Table 4:  Marginal distribution of Dangote Cement 

Distribution AIC BIC 

Generalized t -3.8863 -3.8080 

Skew Normal -3.5114 -3.4530 

Student t distribution -3.8545 -3.7919 

Normal Inverse Gaussian -4.3191 -4.2487 

 

Marginal distribution of Guarantee Trust Company 

Distribution AIC BIC 

Generalized t -3.2873 -3.2247 

Skew Normal -3.1756 -3.1176 

Student t distribution -3.2825 -3.2134 

Normal Inverse Gaussian -3.2901 -3.2197 

Marginal distribution of Vitafoam 

Distribution AIC BIC 

Generalized t -3.1609 -3.0983 

Skew Normal -2.9855 -2.9229 

Student t distribution -3.1577 3.0873 

Normal Inverse Gaussian -3.5783 -3.5079 

Marginal distribution of Nestle 

Distribution AIC BIC 

Generalized t -3.9616 -3.8990 

Skew Normal -3.4046 -3.3420 

Student t distribution -4.1024 -4.0320 

Normal Inverse Gaussian -4.2175 -4.1470 

 

Marginal distribution of Fidson 

Distribution AIC BIC 

Generalized t -2.8133 -2.7401 

Skew Normal -2.6542 -2.5775 

Student t distribution -2.7653 -2.6943 

Normal Inverse Gaussian -2.8829 -2.7968 
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RESULTS AND DISCUSSION 

This section describes the results obtained by applying this methodology to our data. Some 

descriptive statistics and representation of variables are presented using weekly data of his five 

companies listed on the Nigerian Stock Exchange from February 2013 to February 2023. The 

companies are Dangote Cement (DANCEM), Guarantee Trust Holding Company (GTCO), 

Nestlé, Vitaform and Fidson. The plot clearly shows that the variable is not stationary. From 

the time graph of the data, it is easy to see that the data has high volatility. This supports his 

decision to use GARCH for modelling. The return series is appropriately biased, as indicated 

by the positive bias estimate. Based on skewness and kurtosis estimates, the return series does 

not follow a normal distribution. The results of this study are comparable to those of Deebom 

et al. (2021) “Comparative modelling of price fluctuations in the Nigerian crude oil market 

using symmetric and asymmetric GARCH models”. In Deebom et al. (2021) it was found that 

the estimates of skewness and kurtosis, and hence the return series, do not follow a normal 

distribution. Also, performing a Halke-Berra test on each of the log returns of the index using 

the null hypothesis that the data in each series comes from a normal distribution with unknown 

mean and unknown variance yields the null hypothesis was dismissed in his 5% S.I. Strictly 

reject normality for each row returned. Nestle's standard deviation of 264.149005 and Dangote 

Cement's standard deviation of 46.885487 in Table 1 confirm the high slope of the graph in 

Figure 1. Table 1 clearly shows that all assets are not normally distributed, regardless of the 

data period. The sample return skews are mostly positive, except for the Nestlé index, which 

has negative values. From the values obtained for kurtosis, all series in the sample appear to be 

clearly strong. This indicates non-normality and suggests that leptokurtosis arises from an 

accumulation pattern of market volatility, with periods of high (low) and periods of high 

volatility. (Low) volatility is followed numerically and graphically by period. This clearly 

suggests that ARMA and GARCH model specifications should be applied to deal with this 

non-normality condition. This is in line with Deebom and Essi (2017) who opined that the 

abnormality pattern of each asset is mainly due to the environment of the Nigerian financial 

market during the domestic and global financial crisis. Around 2016, Nigeria experienced a 

domestic financial crisis, a 20-year recession caused by economic collapse. This led to a sharp 

increase in bankruptcies, liquidations, and financial failures of households and businesses. The 

second volatility cluster was caused by the global financial crisis, which began with COVID-

19 lockdowns and was followed by a recession. 

 To invest more accurately and strategically, you need to analyse the dependency structure of 

these assets, as descriptive statistics alone are not sufficient to analyse the relationships in 

multivariate data series. Common model selection criteria, Akaike Information Criterion (AIC) 

and Swartz-Bayesian Information Criterion (BIC), are used to select the best recommended 

model for a price and return series. The selection is based on the model with the lowest 

information criterion. From Table 4, we can see that the marginal values that best fit the 

residuals of his GARCH model for Dancem, GTCO, Vitafoam, Nestle, and Fidson were normal 

inverse Gaussian distributions, respectively. Non-normality and asymmetry are important for 

financial returns. 
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Conclusion  

 

It can be concluded that time series descriptive statistics alone are not sufficient for the analysis 

of multivariate data series, as the dependence structure of assets needs to be analyzed. 

Therefore, further estimation is required to determine whether volatility, normal inverse 

Gaussian distribution, non-normality, and asymmetry are important for financial returns. 

Common model selection criteria, the Akaike Information Criterion (AIC) and the Swartz-

Bayesian Information Criterion (BIC), can be used to determine which recommended model 

best fits the price and return series you choose. The results show that the best marginal values 

of the residuals of the GARCH model when estimating Dancem, GTCO, Vitafoam, Nestle, and 

Fidson were normal inverse Gaussian distributions, respectively. 
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